Review

Immunotherapy in recurrent/metastatic head and neck squamous cell carcinoma: PD-L1 and beyond

Andrea Ascione¹, Andrea Botticelli², Martina Leopizzi³, Edoardo Cerbelli¹, Alessio Cirillo², Diana Bellavia⁴, Carlo Della Rocca³, Giulia d'Amati², Bruna Cerbelli³

¹ Department of Experimental Medicine, Sapienza, University of Rome, Rome, Italy; ² Department of Radiology, Oncology and Pathology, Sapienza, University of Rome, Rome, Italy; ³ Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy; ⁴ Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy

Summary

Head and neck squamous cell carcinoma (HNSCC) is a prominent global health concern because of its high incidence, aggressive clinical behavior, and scarce therapeutic options. The management of these neoplasms in the recurrent/metastatic setting has been revolutionized following the results of key clinical trials, leading to the advent of immunotherapeutic agents targeting the PD-1/PD-L1 axis. Despite the exciting results obtained with the new drugs, immunotherapy is helpful only in a sizable minority of patients, and there is a pressing need to identify reliable predictive biomarkers for patient selection. The immunohistochemical assessment of PD-L1 expression was initially identified as a powerful and easily accessible predictive tool, and gained its place as the current standard for patient selection, but it has clear limitations. The imperfect predictive power of PD-L1 has resulted in a strong effort to discover additional clinical, pathological and molecular biomarkers such as tumor HPV status, mutational burden, microsatellite instability, and much more. In addition, the tumor microenvironment has been extensively studied searching for promising new biomarkers as potential avenues for refining patient selection and improvement of treatment outcomes. As we gain deeper understanding of the complex interplay between tumor biology, immune system, and tumor microenvironment, we are rapidly realizing that the perfect biomarker, the magic bullet, probably doesn't exist. On the other hand, with the introduction of new drugs on the horizon, integration of multiple variables in the context of combined predictive scores is shaping up to be our best weapon in this strife to treat each patient with the best possible drug.

Key words: head and neck squamous cell carcinoma, immunotherapy, biomarkers, PD-L1

Received: September 14, 2024

Accepted: March 31, 2025

Correspondence

Bruna Cerbelli

E-mail: bruna.cerbelli@uniroma1.it

How to cite this article: Ascione A, Botticelli A, Leopizzi M, et al. Immunotherapy in recurrent/metastatic head and neck squamous cell carcinoma: PD-L1 and beyond. Pathologica 2025;117:73-83. https://doi.org/10.32074/1591-951X-1092

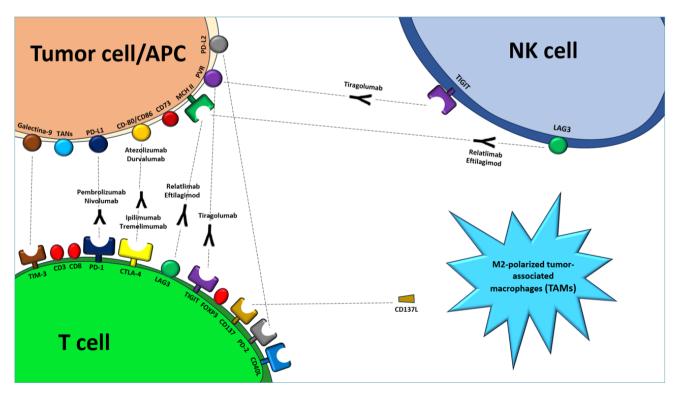
© Copyright by Società Italiana di Anatomia Patologica e Citopatologia Diagnostica, Divisione Italiana della International Academy of Pathology

This is an open access journal distributed in accordance with the CC-BY-NC-ND (Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International) license: the work can be used by mentioning the author and the license, but only for non-commercial purposes and only in the original version. For further information: https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

Background

Head and neck squamous cell carcinoma (HNSCC) is a significant global health concern, representing the sixth most common cancer worldwide with almost 900,000 new cases and 450,000 deaths annually ¹. It comprises a heterogeneous spectrum of diseases originating from the oral cavity, oropharynx, nasal cavity, hypopharynx, and larynx.

HNSCC is characterized by aggressive behavior, high rates of recurrence, and limited treatment options, especially in the recurrent and metastatic (R/M) settings ². Indeed, despite the multimodality treatments available, disease recurrence and/or metastasis are frequently associated with a poor prognosis, with survival averaging less than one year ³⁻⁵. Furthermore, most HNSCCs are diagnosed at advanced stage, with loco-regional lymph node involvement, and approximately 10% of


patients have distant metastases at initial presentation ⁶. Before the advent of immunotherapy, first-line treatment options included combination regimens of cytotoxic agents in combination with cetuximab, a chimeric human anti-epidermal growth factor receptor monoclonal antibody ⁷⁸. On the other hand, taxanes and methotrexate were the most widely used chemotherapeutic agents in platinum-refractory disease, but none of these drugs showed a clear benefit in terms of overall survival (OS) ⁹. The advent of immune checkpoint inhibitors (ICIs) has remarkably changed the management of R/M HNSCC ¹⁰.

Normally, immune checkpoints enable the immune system to respond to infections and malignancies and to protect normal tissues from damage. However, this machinery can be hijacked by neoplasms to induce immune tolerance ¹¹. The complexity of this escape strategy is far to be fully understood and can pivot around the several receptors and ligands involved, including the programmed death receptors (e.g. PD-1), their ligands (PD-L1 and PD-L2), and all the costimulatory and inhibitory associated proteins (e.g. CD40L, CTLA-4, LAG-3, and TIM-3) (Fig. 1) ¹². When a programmed death receptor and its ligand interact, the effector T cells carrying the receptor become unable

to eliminate tumor cells, resulting in immune escape by the tumor. On this basis, ICI therapy aims to prevent the interaction between the programmed death receptor (PD-1) on the surface of T cells and its ligand PD-L1, expressed by the tumor cell ¹².

In the last years, the discovery of ICIs has revolutionized oncology, and the field of HNSCC was involved in a series of clinical trials to assess a possible role for immunotherapy in this neoplasm ¹³. Two ICI agents, in particular the PD-1 inhibitors nivolumab and pembrolizumab, have been approved by FDA in 2016 for R/M HNSCC following the results of the CheckMate 141 and KEYNOTE 040 trials, respectively ^{14,15}. These landmark trials demonstrated significant and durable clinical benefits with immunotherapy, in terms of both response rates and overall survival, for a subset of HNSCC patients who had failed prior platinum-based chemotherapy ^{16,17}.

A few years later, in 2019, after the result of the KEY-NOTE 048 trial ¹⁸ the FDA granted approval for PD-1 inhibition as first-line treatment for patients with metastatic or unresectable, recurrent HNSCC, approving pembrolizumab in combination with platinum and fluorouracil for all patients with HNSCC and pembrolizumab as a single agent for patients with HNSCC

Figure 1. The interplay between tumor cells and the immune microenvironment is a complex balance regulated by a plethora of receptors, ligands and co-stimulatory/inhibitory molecules. Several of these interactions can be affected by existing drugs, mostly monoclonal antibodies, and many others are undergoing research to assess their potential as therapeutic targets.

whose tumors express a PD-L1 combined positive score (CPS) ≥ 1. The expression of PD-L1 on tumor cells and infiltrating immune cells is currently assessed by immunohistochemistry on formalin-fixed paraffin-embedded (FFPE) tissue to identify patients eligible for ICI therapy. The CPS is calculated as the number of PD-L1 positive invasive cancer cells, lymphocytes, and macrophages, divided by the number of viable tumor cells and multiplied by 100. Unfortunately, this predictor is not infallible and may not indicate a long-term response. In fact, only a marginal subset of patients with advanced HNSCC derives meaningful clinical benefit from the new agents (overall response rate not exceeding 35%) 19,20. Lastly, the onset of serious immune-related adverse events is not an unlikely occurrence, and mandates caution in the administration of these treatments 21. Consequently, a tremendous need emerged to identify reliable and practical predictive biomarkers to optimize patient selection and to guide the development of more cost-effective immunotherapeutic strategies for HNSCC.

This review aims to provide a comprehensive overview of the currently available and promising predictive biomarkers in the landscape of immunotherapy in R/M HNSCC.

Biomarkers in HNSCC

PD-L1: LIGHTS AND SHADOWS

Advances in immunology and oncology have expanded our knowledge on the topic of immune checkpoints and their role in solid neoplasms, including HNSCC. Immune checkpoints are essential for regulating the immune response and maintaining self-tolerance, but they can also be hijacked by tumor cells to evade immunosurveillance ²². Several immune checkpoint proteins have been identified as relevant therapeutic targets, and the first wave of immune checkpoint inhibitors to be developed and clinically tested in HNSCC targets the PD-1/PD-L1 axis ¹⁰. By expressing PD-L1, tumor cells interact with the inhibitory receptor PD-1 on effector T cells, neutralizing their activity and dampening the antitumor immune response.

Several scoring systems evaluating tumoral and immunological cellular compartments were developed for quantifying PD-L1 expression in different kinds of malignancies: among these: (i) tumor proportion score (TPS) estimates the percentage of viable neoplastic cells showing partial or complete membrane staining relative among all viable tumor cells; (ii) the immune cell score (IC) refers to the area occupied by PD-L1 positive immune cells (lymphocytes, dendritic cells,

macrophages, and granulocytes) as a percentage of the whole tumor area and; (iii) CPS is the ratio of the number of all PD-L1–positive cells (tumor cells, lymphocytes, macrophages) to the number of all viable tumor cells ¹³.

The many clinical trials performed to test immune checkpoint inhibitors in HNSCC have used different immunohistochemical assays and different thresholds to define PD-L1 positivity, leading to a notable lack of standardization across the field and eventually to the approval of companion diagnostics for the administration of specific drugs 13. This inconsistency is evident in the development of anti-PD-1/PD-L1 agents investigated to date in R/M HNSCC, including pembrolizumab, nivolumab, atezolizumab, durvalumab and avelumab, thus impairing cross-study comparisons and undermining the value of PD-L1 as a biomarker 23. In general, tumor PD-L1 expression is associated with improved efficacy with anti-PD-1/PD-L1 therapy in R/M HNSCC, with its predictive value being enriched by the consideration of PD-L1 expression on both tumor cells and tumor-infiltrating immune cells (CPS) 21. In particular, post hoc analysis of data from the KEY-NOTE-040 trial showed CPS and TPS to have equivalent performances at a cutoff of 50, but CPS is more sensitive than TPS at a lower cutoff of ≥1 24. Therefore, CPS emerged as the best scoring method and is currently recommended, with evidence pointing at the thresholds of CPS ≥20 and ≥ 1 as clinically significant, with improved overall response rate, overall survival and progression-free survival in this population when treated with ICIs 18,19.

The predictive value of PD-L1 expression scored as CPS≥1 is unfortunately far from perfect, with patients testing negative for PD-L1 still occasionally responding to treatment and patients testing positive sometimes displaying only poor and temporary response. The conflicting observations regarding PD-L1 as a predictive biomarker of tumor response likely reflects several issues, both IHC-test specific and tumor-biology-related.

Concerning the issue of the several immunohistochemical assays available for the evaluation of PD-L1, in the US pembrolizumab was approved by the FDA exclusively for patients with CPS \geq 1 assessed with the 22C3 PharmDx assay, while in Europe EMA stated that pembrolizumab could be used as first-line treatment for R/M HNSCC in patients with CPS \geq 1 as assessed using any validated antibody and IHC platform.

This was received positively by the European pathological departments, as many of them had in use assays different than 22C3 PharmDx ²⁵. Of course, the problem of the concordance of different assays and

platforms in the HNSCC setting was rapidly raised. The first studies addressing this issue reported considerable differences among the assays ²⁶, while the later ones gave reassuring results with high agreement, also demonstrating good inter-observer reliability among pathologists ^{27,28}. The issue of the inter- and intra-observer reliability has often been considered a critical flaw of PD-L1 testing, but several studies have confirmed that concordance is very high among trained pathologists ²⁹.

Currently, no recommendation exists on whether PD-L1 should be preferably tested on the primary tumor, lymph node metastasis, or distant metastasis when these options are simultaneously available. Studies have demonstrated fair concordance between these sites, with discordant cases usually characterized by higher expression in lymph node metastases 30

Another critical issue concerns the concordance between biopsies and resection specimens, and even between different blocks of the same resection, but most studies have shown that there is significant reproducibility in both these scenarios ³¹⁻³³.

A significant problem is also represented by the concordance of PD-L1 expression in tissue from primary disease at initial diagnosis and recurrent disease or metastatic localization, as it can be very difficult to obtain new material in many cases at progression. Concordance studies in this specific setting have yielded contrasting results, with discordance in up to 36% of cases using the only threshold of CPS \geq 1 34,35 .

Probably underlying this discordance and also creating a significant problem on its own, is the fact that PD-L1 expression has been shown to decrease when tested on slides from the same block in a matter of months to a few years, with reduced expression involving both tumor and immune cells ³⁶.

In the end, the choice of what exactly should be tested is up for debate and is a decision that should be taken jointly by oncologists and pathologists. Of course, when dealing with borderline cases and particularly small samples, logic dictates caution, and a properly fixed block from the most recent resection specimen is probably to be preferred, if available.

Another important controversy regarding PD-L1 testing in HNSCC concerns the reliability of fine needle aspiration-derived cell blocks as source material. This matter is of no small importance, considering that this can sometimes be the only material that is available or easily obtained. Several studies have addressed the issue, and most evidence points to cytology as underestimating CPS scores, with resulting low negative predictive value and very high positive predictive value 37,38. Consequently, a positive CPS should

be regarded as reliable, while a negative test should prompt further investigation if feasible.

Tumor mutational burden and microsatellite instability

Tumor molecular burden (TMB) can be grossly defined as the total number of mutations present in a tumor ³⁹. Calculation of the TMB used to be performed through whole exome sequencing, but has since developed to rely on extensive gene panels analyzed through next-generation sequencing ³⁹. Tumors with higher TMB harbor more neoantigens and are thought to be more immunogenic ⁴⁰. Several studies have also shown that, in various solid neoplasms, TMB-high status is associated with improved response to ICIs ⁴¹. Consequently, FDA has granted accelerated approval to the administration of pembrolizumab in patients with metastatic disease found to be TMB-high (≥10 mutations/Mb) by an FDA-approved assay and having no other satisfying treatment option ⁴².

Regarding HNSCC, the most recent meta-analyses confirm that patients with TMB-high tumors treated with pembrolizumab had a significantly improved overall response rate (OR = 2.62; 95% CI 1.74–3.94; p < 0.0001) and a survival advantage (HR = 0.53; 95% CI 0.39–0.71; p < 0.0001) compared with patients with TMB-low tumors ⁴³ These results are largely independent of PD-L1 expression ⁴¹.

While TMB accounts for a plethora of different kinds of genetic alterations, the type of mutation can also be particularly significant. In fact, the quality of the neoantigens has been postulated to be more important than their quantity, and in the case of HNSCC frameshift mutations have been associated with improved response to ICIs 44.

A recent advance in the field of TMB is its characterization from blood samples using circulating tumor DNA, a reliable, non-invasive technique that has several advantages, including the possibility of repeated sampling during therapy and the possibility of testing patients for which no solid tissue sample is available ⁴⁰.

Limitations of TMB as a predictive biomarker certainly include the cost of the assays and the fact that the predictive power is currently low, with around 5% of patients with low TMB positively responding to ICIs and > 50% of patients with high TMB not responding 40 .

In 2023, the American Society of Clinical Oncology (ASCO) published guidelines for immunotherapy and biomarker testing in R/M HNSCC stating that TMB testing may be performed in patients with recurrent

or metastatic HNSCC when CPS is not available or in patients with rare tumors, and that TMB \geq 10/Mb should be interpreted as high, correlating with a clinical benefit to PD-1 inhibitors ⁴⁵.

Currently, no recommendation exists to test TMB in all R/M HNSCC ²¹ but according to these results, TMB is expected to play an important role in the future.

Microsatellite instability (MSI) is a molecular condition caused by impairment of the DNA mismatch repair system and characterized by genetic alterations in the length of microsatellites, which are short, repetitive DNA sequences scattered throughout the genome. Studies across many different cancer types have suggested that tumors with high MSI (MSI-H)/mismatch repair deficient are associated with higher TMB and display higher sensitivity to ICIs, a consequence of the large proportion of mutant neoantigens that characterize these neoplasms ^{46,47}. According to these results, in 2017 FDA approved ICI treatment (pembrolizumab) for patients with deficient mismatch repair or MSI-H tumors regardless of histology.

However, the proportion of MSI-H HNSCC is very low (around 1-3%) and so, even though sporadic reports of complete and lasting response to ICIs in these cases exist, there is currently no translational role for MSI in this field, and the current consensus documents recommend against standard MSI testing ^{21,48,49}.

Human Papilloma Virus

In the last decades, the role of Human Papilloma Virus (HPV) as a risk factor for HNSCC, especially in the oropharynx, has become increasingly acknowledged, to the point that HPV+ tumors are now regarded as biologically and clinically distinct from HPV- tumors. Furthermore, with reduction in smoking habits, HPV infection is now considered as the most important risk factor for oropharyngeal HNSCC in the developed world, underlying 45-90% of these cases and around 26% of all HNSCCs 50,51 .

HPV+ tumors tend to affect younger patients, male, Caucasian and non-smokers, and often present with large, cystic cervical lymph node metastases. HPV status has important positive prognostic value, as HPV+ tumors are highly responsive to standard therapies ⁵¹.

Both HPV+ and HPV- HNSCCs are highly immune-infiltrated neoplasms, but HPV+ HNSCC typically has the highest density of tumor infiltrating lymphocytes (TILs). Patients with HPV+ HNSCC show improved outcomes with PD-1/PD-L1 axis blockade compared to those with HPV– tumors ^{52,53}.

Interestingly, the most recent evidence from large

meta-analyses across many cancer types from several different organs, has shown that viral-associated neoplasms (HPV, HBV, HCV) generally show a better response to ICIs, probably due to their increased immunogenicity ^{51,53}.

Nevertheless, there is currently no specific recommendation to test HPV status in R/M HNSCC before starting immunotherapy, as this information is not likely to change therapeutic planning ²¹.

Tumor Immune Microenvironment

Tumor response to ICIs is known to be not only up to the biology of the neoplastic cells, but also of the surrounding microenvironment, with its specific immunological milieu consisting of the complex interplay of cell populations and molecular signaling pathways.

TILs are known to be direct effectors of antitumor immunity and can be predictors of prognosis in several solid neoplasms, but their role as predictors of response to immunotherapy is still being determined ⁵⁴⁻

Research in this field is hindered by several issues related to the heterogeneity of available studies, including the exact method of TILs scoring, with some researchers assessing TILs in H&E slides and others using a plethora of possible immunohistochemical molecules/markers (CD3, CD8, FOXP3, etc.). The recently published guidelines of the International Immuno-oncology Biomarker Working Group (IIBWG) formed an essential step towards a standardized assessment method and implementation of TILs in pathology reporting, but they are not yet considered mature for introduction in the clinical routine of HNSCC reporting ^{55,57}.

HNSCCs are known to have a specific tumor microenvironment (TIM), on average being one of the most immune-infiltrated among the solid neoplasms (especially true for HPV+ tumors), with high ratio of Treg/CD8+ T cells and large numbers of CD56dim NK cells 58. Using gene expression analysis, the TIM of HPV+ HNSCCs was found to have higher expression of genes encoding PD-1, CTLA-4, and TIM3, among others, a possible piece of evidence that the immune infiltrate of these tumors could be largely exhausted 59. In the setting of HNSCC, higher numbers of CD3+ and CD8+ T cells have generally been linked to improved clinical outcomes 60. However, results have been heterogeneous when stratified for tumor anatomic subsite and HPV status. For instance, an association between high CD8+ T cells and tumor recurrence was found in oral squamous cell carcinomas 61.

Interpretation of the number of CD4+ T cells comes

with several inherent problems, as many different subsets of these lymphocytes exist, with wildly different immunological roles. Even levels of FoxP3+ Treg lymphocytes, historically considered to have a role in tumoral immune escape, were found to have a much more controversial role across several solid neoplasms, including HNSCC, where some studies have found a positive effect on survival ^{55,62}.

When it comes to prediction of response to immunotherapy, there is already evidence from a large meta-analysis across many cancer types that high CD8+ T cells can predict treatment outcomes in patients with ICIs across different cancers, both in monotherapy and in combination with other therapies ⁶³. This meta-analysis included HNSCC in the form of only one study, using non-standard ICI regimen, and its specific value in the field is therefore up for debate.

Efforts focusing specifically on HNSCC have given conflicting results, with one study showing positive prediction of anti PD-1 response by CD8+ T cells ⁴⁴, and another finding no correlation between single subsets of TILs and response ⁶⁴.

It is important to highlight that TILs are not the only cells playing a role in the TIM. In fact, the presence of myeloid-derived suppressor cells (MDSCs), M2-polarized tumor-associated macrophages (TAMs), and N2 tumor-associated neutrophils (TANs) has been associated with attenuated response to ICI therapy ^{65,66}.

While TILs may not yet be ready to be used as biomarkers, numerous immune-related molecular biomarkers are being investigated in HNSCC, and many seem to hold great promise ¹³. Here we will only review some of these.

PD-L2 is a second possible ligand for PD-1. It has been observed that PD-L2 expression is an independent predictor of response to ICI in HNSCC. Furthermore, positivity to both PD-L1 and PD-L2 entails a better response than what is seen with PD-L1 positivity alone ⁶⁷.

Interferons of type I and II are increasingly recognized as fundamental for the interaction between the immune system and tumor. IFN- γ is considered to be a strong inducer of PD-L1 expression in cancer cells, but its direct effect on response to ICIs is very complicated to predict and probably dependent on several other dynamics ⁶⁸.

CD73, a protein involved in the extracellular adenosine-generating pathway, is known for its immunosuppressive role in solid neoplasms, and has been linked to reduced response to immunotherapy ^{69,70}.

Indoleamine 2,3-dioxygenase (IDO) is an enzyme produced in inflammatory states that plays a role in limiting harmful inflammation by promoting immunosuppression. IDO has been shown to play a role in the

strategy that various tumors, including HNSCC, utilize to escape the immune system ⁷¹. Higher IDO expression carries negative prognostic value in HNSCC and other carcinomas and has already been linked to ICI resistance in non-small cell lung cancer ⁷². IDO is shaping up to become a potential therapeutic target in and of itself, but will possibly also have a role as a biomarker for ICI response ^{68,73}.

Exciting advancements are also coming from the characterization of TIM by gene expression profiling. Analysis of hundreds of genes across different cancer types, including HNSCC, has led to the discovery of specific signatures associated with worse clinical outcomes in patients treated with ICIs ¹⁴. Many of the top-ranked genes were directly linked to IFN-γ signaling. Composite scores depending on the expression of these genes were formulated, allowing the identification of populations with overall response rates as high as 40% ⁷⁴. These important studies promoted the search for other gene expression profile signatures linked to ICI response, leading to the recent finding of the exceptional positive predictive abilities of a profile linked to overexpression of IFN-I related genes ⁷⁵.

Liquid profiling

Considerable efforts have been made in oncology to harvest as much information as possible from liquid biopsies, a technique that is now considered ready to move from the bench to the bedside ⁷⁶. The term liquid profiling can be used to define the in-depth characterization of the biological information gathered from a liquid biopsy.

The advantages of the liquid biopsy are manyfold: it is easily performed, it circumvents the need for a solid tissue sample, it allows repeated testing over time and is representative of the overall tumor burden across the body and not only of the selected site ⁷⁷. The liquid biopsy holds promise to advance our ability to monitor and predict treatment response, detect early relapses and check for minimal residual disease ⁷⁷. Introduction of liquid profiling in clinical practice is now a matter of standardization of the pre-analytical and analytical phases, and of approval of certified panels and biomarkers ⁷⁷.

In the field of HNSCC many possible biomarkers are being investigated, including circulating tumor and immune cells, circulating nucleic acids, tumor-derived vesicles and metabolomic markers ⁷⁸.

Time will be required to understand which of these biomarkers will predict response to ICIs. Interestingly, PD-L1 can be found in peripheral blood in a soluble form, inside vesicles and on circulating tumor cells, opening the possibility to test this already established marker on a different type of materials ⁷⁹. High levels of blood PD-L1 have been correlated with poor prognosis in patients with HNSCC ⁸⁰.

Among circulating immune cells, there is evidence that the levels of the CD3+CD137+ lymphocyte population, already known to play a role in the antitumor response in several solid neoplasms, may positively predict response to ICIs when tested before the initiation of immune therapy in patients with R/M HNSCC ⁸¹.

Other

SMOKING

Beyond its role as an important risk factor and carcinogen, smoking is known to influence the biology of solid neoplasms in several ways. In particular, smoking is a known cause of DNA damage, and smoke-related cancers tend to have higher overall mutational loads, leading to the formation of more immunogenic neoantigens 47,82. These effects could possibly lead to improved immune activity against the neoplasm, but seem to be canceled by the severe and multifaceted immunosuppressive activity that smoking also possesses 76. The effects of smoking on response to immunotherapy have yet to be elucidated, but smoker HNSCC patients were found to have poorer clinical outcome when treated with ICIs than non-smokers 15,82. Whether smoking is an independent factor or not is still up for debate in this specific context.

Місковіоме

The term oral microbiome defines the complex community of microorganisms that populates the oral cavity. This microbial community consists of bacteria, fungi, and viruses that colonize various surfaces within the oral cavity and beyond. The oral microbiome is incredibly diverse, with hundreds of different species present in a healthy individual ⁸³. These microorganisms play a crucial role in maintaining oral health through a complex interplay with the host immune system. In fact, the microbiome shapes the local immune system and likely plays an important role in the biological history of neoplasms arising here, across all steps going from carcinogenesis to treatment response ⁸³.

The role of the microbiome has been extensively studied in colorectal cancer, where several different genera of microbes (*Akkermansia*, *Fecalibacterium*, *Bifidobacterium*, etc.) have shown association with response to ICI therapy ^{2,84,85}. Also interesting is the finding that fecal microbiota transplantation from patients who responded to ICIs into germ-free or anti-

biotic-treated mice improved the antitumor effects of PD-1 blockade, while microbiota from non-responders failed to do so ⁸⁶.

Active research is also ongoing in the specific field of HNSCC, which has a direct interplay with its specific microbiome, especially in the oral cavity. No significant associations were detected between oral bacterial diversity and clinical response to nivolumab in the CheckMate141 population ⁸⁷. On the other hand, another study demonstrated that antibiotic treatment within one month before the initiation of immunotherapy for the treatment of R/M HNSCC was significantly associated with decreased survival ⁸⁸.

Ongoing studies are focusing on the possible role of the oral microbiome in the management of HNSCC, and whether its characterization will be of use in the selection of patients who are fit for immunotherapy.

Conclusions

Accurate prediction of ICI response is still far from being reached and will probably never depend on a single magic bullet. On the contrary, any advancement in this field will likely rely on an improved understanding of the complex interplay between tumor cells, immune cells, and the tumor microenvironment and, judging from the current trends, it will probably integrate multiple heterogeneous variables into composite predictive scores. Among these variables there will probably be a role for TMB, expression of PD-L1 and related molecules, and for many other factors that were discussed herein. The future increases in our ability to characterize the specific tumor's signature and the individuality of the patient are likely to play a pivotal role.

In order to integrate these different variables, the organization of large-scale trials, with rigidly standardized and reproducible methodology, is going to be of key importance.

FUNDING

This research did not receive any specific grant from funding agencies in the public, commercial, or not-forprofit sectors.

CONFLICTS OF INTEREST STATEMENT

The authors have no conflict of interest relevant to the present work.

AUTHOR CONTRIBUTIONS

AA: investigation, project administration, visualization, writing – original draft, writing – review and editing; AB: project administration, supervision, writing – review and editing; ML: investigation, writing; EC: in-

vestigation, writing: original draft; AC: investigation, writing – original draft, visualization; DB: investigation, supervision; CDR: supervision; GdA: writing – review and editing, supervision; BC: investigation, writing – review and editing, investigation, supervision, project administration.

References

- Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209-249. https://doi.org/10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338.
- Muzaffar J, Bari S, Kirtane K, et al. Recent Advances and Future Directions in Clinical Management of Head and Neck Squamous Cell Carcinoma. Cancers (Basel). 2021 Jan 18;13(2):338. https://doi.org/10.3390/cancers13020338. PMID: 33477635; PMCID: PMC7831487.
- Botticelli A, Mezi S, Pomati G, et al. The 5-Ws of immunotherapy in head and neck cancer. Crit Rev Oncol Hematol. 2020 Sep;153:103041. https://doi.org/10.1016/j.critrevonc.2020.103041. Epub 2020 Jun 30. PMID: 32629362.
- Marur S, Forastiere AA. Head and neck cancer: changing epidemiology, diagnosis, and treatment. Mayo Clin Proc. 2008 Apr;83(4):489-501. https://doi.org/10.4065/83.4.489. Erratum in: Mayo Clin Proc. 2008 May;83(5):604. PMID: 18380996.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan;69(1):7-34. https://doi.org/10.3322/caac.21551. Epub 2019 Jan 8. PMID: 30620402.
- Botticelli A, Cirillo A, Strigari L, et al. Anti-PD-1 and Anti-PD-L1 in Head and Neck Cancer: A Network Meta-Analysis. Front Immunol. 2021 Aug 9;12:705096. https://doi.org/10.3389/fimmu.2021.705096. PMID: 34434192; PMCID: PMC8380817.
- Vermorken JB, Mesia R, Rivera F, et al. Platinum-based chemotherapy plus cetuximab in head and neck cancer. N Engl J Med. 2008 Sep 11;359(11):1116-27. https://doi.org/10.1056/NEJ-Moa0802656. PMID: 18784101.
- ⁸ Guigay J, Aupérin A, Fayette J, et al. GORTEC; AIO; TTCC, and UniCancer Head and Neck groups. Cetuximab, docetaxel, and cisplatin versus platinum, fluorouracil, and cetuximab as first-line treatment in patients with recurrent or metastatic head and neck squamous-cell carcinoma (GORTEC 2014-01 TPExtreme): a multicentre, open-label, randomised, phase 2 trial. Lancet Oncol. 2021 Apr;22(4):463-475. https://doi.org/10.1016/S1470-2045(20)30755-5. Epub 2021 Mar 5. PMID: 33684370.
- ⁹ El Rassy E, Assi T, Bakouny Z, et al. Comparison of second-line treatments of recurrent and/or metastatic squamous cell carcinoma of the head and neck. Future Oncol. 2019 Mar;15(8):909-923. https://doi.org/10.2217/fon-2018-0663. Epub 2019 Jan 23. PMID: 30669875.
- Fasano M, Corte CMD, Liello RD, et al. Immunotherapy for head and neck cancer: Present and future. Crit Rev Oncol Hematol. 2022 Jun;174:103679. https://doi.org/10.1016/j.critrevonc.2022.103679. Epub 2022 Apr 6. PMID: 35395371.
- Marin-Acevedo JA, Dholaria B, Soyano AE, et al. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol. 2018 Mar 15;11(1):39. https://doi.org/10.1186/s13045-018-0582-8. PMID: 29544515; PMCID: PMC5856308
- Wang Y, Yang S, Wan L, et al. New developments in the mechanism and application of immune checkpoint inhibitors in cancer therapy (Review). Int J Oncol. 2023 Jul;63(1):86. https://doi.

- org/10.3892/ijo.2023.5534. Epub 2023 Jun 16. PMID: 37326100; PMCID: PMC10308343.
- Park JC, Krishnakumar HN, Saladi SV. Current and Future Biomarkers for Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinoma. Curr Oncol. 2022 Jun 8;29(6):4185-4198. https://doi.org/10.3390/curroncol29060334. PMID: 35735443: PMCID: PMC9221564.
- Seiwert TY, Burtness B, Mehra R, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016 Jul;17(7):956-965. https://doi.org/10.1016/S1470-2045(16)30066-3. Epub 2016 May 27. PMID: 27247226.
- Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for Recurrent Squamous-Cell Carcinoma of the Head and Neck. N Engl J Med. 2016 Nov 10;375(19):1856-1867. https://doi.org/10.1056/NEJMoa1602252. Epub 2016 Oct 8. PMID: 27718784; PMCID: PMC5564292.
- Hsieh RW, Borson S, Tsagianni A, et al. Immunotherapy in Recurrent/Metastatic Squamous Cell Carcinoma of the Head and Neck. Front Oncol. 2021 Sep 1;11:705614. https://doi.org/10.3389/fonc.2021.705614. PMID: 34540672; PMCID: PMC8440813.
- ¹⁷ Sacco AG, Cohen EE. Current Treatment Options for Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma. J Clin Oncol. 2015 Oct 10;33(29):3305-13. https://doi.org/10.1200/JCO.2015.62.0963. Epub 2015 Sep 8. PMID: 26351341.
- Burtness B, Harrington KJ, Greil R, et al. KEYNOTE-048 Investigators. Pembrolizumab alone or with chemotherapy versus cetuximab with chemotherapy for recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-048): a randomised, open-label, phase 3 study. Lancet. 2019 Nov 23;394(10212):1915-1928. https://doi.org/10.1016/S0140-6736(19)32591-7. Epub 2019 Nov 1. Erratum in: Lancet. 2020 Jan 25;395(10220):272. https://doi.org/10.1016/S0140-6736(20)30116-1. Erratum in: Lancet. 2020 Feb 22;395(10224):564. https://doi.org/10.1016/S0140-6736(20)30254-3. Erratum in: Lancet. 2021 Jun 12;397(10291):2252. https://doi.org/10.1016/S0140-6736(21)01119-3. PMID: 31679945.
- Huang Z, Zheng S, Ding S, et al. Prognostic role of programmed cell death ligand-1 expression in head and neck cancer treated with programmed cell death protein-1/programmed cell death ligand-1 inhibitors: A meta-analysis based on clinical trials. J Cancer Res Ther. 2021 Jul;17(3):676-687. https://doi.org/10.4103/jcrt. JCRT_1606_20. PMID: 34269299.
- Kim H, Kwon M, Kim B, et al. Clinical outcomes of immune check-point inhibitors for patients with recurrent or metastatic head and neck cancer: real-world data in Korea. BMC Cancer. 2020 Aug 5;20(1):727. https://doi.org/10.1186/s12885-020-07214-4. PMID: 32758163; PMCID: PMC7405432.
- Cohen EEW, Bell RB, Bifulco CB, et al. The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC). J Immunother Cancer. 2019 Jul 15;7(1):184. https://doi.org/10.1186/s40425-019-0662-5. PMID: 31307547; PMCID: PMC6632213.
- Shiravand Y, Khodadadi F, Kashani SMA, et al. Immune Check-point Inhibitors in Cancer Therapy. Curr Oncol. 2022 Apr 24;29(5):3044-3060. https://doi.org/10.3390/curroncol29050247. PMID: 35621637; PMCID: PMC9139602.
- Oliva M, Spreafico A, Taberna M, et al. Immune biomarkers of response to immune-checkpoint inhibitors in head and neck squamous cell carcinoma. Ann Oncol. 2019 Jan 1;30(1):57-67. https:// doi.org/10.1093/annonc/mdy507. PMID: 30462163; PMCID: PMC6336003.

- Emancipator K, Huang L, Aurora-Garg D, et al. Comparing programmed death ligand 1 scores for predicting pembrolizumab efficacy in head and neck cancer. Mod Pathol. 2021 Mar;34(3):532-541. https://doi.org/10.1038/s41379-020-00710-9. Epub 2020 Nov 25. PMID: 33239737.
- Prince EA, Sanzari JK, Pandya D, et al. Analytical Concordance of PD-L1 Assays Utilizing Antibodies From FDA-Approved Diagnostics in Advanced Cancers: A Systematic Literature Review. JCO Precis Oncol. 2021 Jun 8;5:953-973. https://doi.org/10.1200/ PO.20.00412. PMID: 34136742; PMCID: PMC8202559.
- De Ruiter EJ, Mulder FJ, Koomen BM, et al. Comparison of three PD-L1 immunohistochemical assays in head and neck squamous cell carcinoma (HNSCC). Mod Pathol. 2021 Jun;34(6):1125-1132. https://doi.org/10.1038/s41379-020-0644-7. Epub 2020 Aug 5. PMID: 32759978.
- ²⁷ Cerbelli B, Girolami I, Eccher A, et al. Evaluating programmed death-ligand 1 (PD-L1) in head and neck squamous cell carcinoma: concordance between the 22C3 PharmDx assay and the SP263 assay on whole sections from a multicentre study. Histopathology. 2022 Jan;80(2):397-406. https://doi.org/10.1111/his.14562. Epub 2021 Nov 11. PMID: 34496080; PMCID: PMC9299113.
- ²⁸ Guerini Rocco E, Eccher A, Girolami I, et al. Concordance between Three PD-L1 Immunohistochemical Assays in Head and Neck Squamous Cell Carcinoma (HNSCC) in a Multicenter Study. Diagnostics (Basel). 2022 Feb 13;12(2):477. https://doi.org/10.3390/diagnostics12020477. PMID: 35204568; PMCID: PMC8871075.
- Nuti S, Zhang Y, Zerrouki N, et al. High interobserver and intraobserver reproducibility among pathologists assessing PD-L1 CPS across multiple indications. Histopathology. 2022 Dec;81(6):732-741. https://doi.org/10.1111/his.14775. Epub 2022 Sep 23. PMID: 35993150.
- Paolino G, Pantanowitz L, Barresi V, et al. PD-L1 evaluation in head and neck squamous cell carcinoma: Insights regarding specimens, heterogeneity and therapy. Pathol Res Pract. 2021 Oct;226:153605. https://doi.org/10.1016/j.prp.2021.153605. Epub 2021 Sep 1. PMID: 34530257.
- Ambrosini-Spaltro A, Limarzi F, Gaudio M, et al. PD-L1 expression in head and neck carcinoma by combined positive score: a comparison among preoperative biopsy, tumor resection, and lymph node metastasis. Virchows Arch. 2022 Jul;481(1):93-99. https:// doi.org/10.1007/s00428-022-03322-7. Epub 2022 Apr 14. PMID: 35420378.
- ³² Kalpakoff M, Hund S, Musser J, et al. Intrapatient Tumor Heterogeneity in IHC Interpretation Using PD-L1 IHC 22C3 pharmDx. Appl Immunohistochem Mol Morphol. 2021 Oct 1;29(9):667-673. https://doi.org/10.1097/PAI.000000000000941. PMID: 33973887; PMCID: PMC8505133.
- Scorer P, Scott M, Lawson N, et al. Consistency of tumor and immune cell programmed cell death ligand-1 expression within and between tumor blocks using the VENTANA SP263 assay. Diagn Pathol. 2018 Jul 24;13(1):47. https://doi.org/10.1186/s13000-018-0725-9. PMID: 30041679; PMCID: PMC6058354.
- ³⁴ Bill R, Faquin WC, Pai SI. Assessing PD-L1 Expression in Head and Neck Squamous Cell Carcinoma: Trials and Tribulations. Head Neck Pathol. 2023 Dec;17(4):969-975. https://doi.org/10.1007/s12105-023-01590-6. Epub 2023 Nov 6. PMID: 37930471; PM-CID: PMC10739626.
- ³⁵ Karabajakian A, Bouaoud J, Michon L, et al. Longitudinal assessment of PD-L1 expression and gene expression profiles in patients with head and neck cancer reveals temporal heterogeneity. Oral Oncol. 2021 Aug;119:105368. https://doi.org/10.1016/j.oraloncology.2021.105368. Epub 2021 Jun 7. PMID: 34111704.
- ³⁶ Karpathiou G, Vincent M, Dumollard JM, et al. PD-L1 expression in head and neck cancer tissue specimens decreases with time.

- Pathol Res Pract. 2022 Sep;237:154042. https://doi.org/10.1016/j.prp.2022.154042. Epub 2022 Jul 27. PMID: 35926433.
- ³⁷ Liu Z, Williams M, Stewart J, et al. Evaluation of programmed death ligand 1 expression in cytology to determine eligibility for immune checkpoint inhibitor therapy in patients with head and neck squamous cell carcinoma. Cancer Cytopathol. 2022 Feb;130(2):110-119. https://doi.org/10.1002/cncy.22501. Epub 2021 Aug 10. PMID: 34375025; PMCID: PMC8810615.
- Paintal AS, Brockstein BE. PD-L1 CPS Scoring Accuracy in Small Biopsies and Aspirate Cell Blocks from Patients with Head and Neck Squamous Cell Carcinoma. Head Neck Pathol. 2020 Sep;14(3):657-665. https://doi.org/10.1007/s12105-019-01097-z. Epub 2019 Nov 13. PMID: 31721075; PMCID: PMC7413953.
- ³⁹ Klempner SJ, Fabrizio D, Bane S, et al. Tumor Mutational Burden as a Predictive Biomarker for Response to Immune Checkpoint Inhibitors: A Review of Current Evidence. Oncologist. 2020 Jan;25(1):e147-e159. https://doi.org/10.1634/theoncologist.2019-0244. Epub 2019 Oct 2. PMID: 31578273; PMCID: PMC6964127.
- Jardim DL, Goodman A, de Melo Gagliato D, et al. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker. Cancer Cell. 2021 Feb 8;39(2):154-173. https://doi.org/10.1016/j.ccell.2020.10.001. Epub 2020 Oct 29. PMID: 33125859; PMCID: PMC7878292.
- ⁴¹ Cristescu R, Aurora-Garg D, Albright A, et al. Tumor mutational burden predicts the efficacy of pembrolizumab monotherapy: a pan-tumor retrospective analysis of participants with advanced solid tumors. J Immunother Cancer. 2022 Jan;10(1):e003091. https://doi.org/10.1136/jitc-2021-003091. PMID: 35101941; PM-CID: PMC8804694.
- Marcus L, Fashoyin-Aje LA, Donoghue M, et al. FDA Approval Summary: Pembrolizumab for the Treatment of Tumor Mutational Burden-High Solid Tumors. Clin Cancer Res. 2021 Sep 1;27(17):4685-4689. https://doi.org/10.1158/1078-0432.CCR-21-0327. Epub 2021 Jun 3. PMID: 34083238; PMCID: PMC8416776.
- ⁴³ Rodrigo JP, Sánchez-Canteli M, Otero-Rosales M, et al. Tumor mutational burden predictability in head and neck squamous cell carcinoma patients treated with immunotherapy: systematic review and meta-analysis. J Transl Med. 2024 Feb 4;22(1):135. https://doi.org/10.1186/s12967-024-04937-x. PMID: 38311741; PMCID: PMC10840180.
- Hanna GJ, Lizotte P, Cavanaugh M, et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight. 2018 Feb 22;3(4):e98811. https://doi.org/10.1172/jci.insight.98811. PMID: 29467336; PMCID: PMC5916245.
- Yilmaz E, Ismaila N, Bauman JE, et al. Immunotherapy and Biomarker Testing in Recurrent and Metastatic Head and Neck Cancers: ASCO Guideline. J Clin Oncol. 2023 Feb 10;41(5):1132-1146. https://doi.org/10.1200/JCO.22.02328. Epub 2022 Dec 15. PMID: 36521102.
- ⁴⁶ Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017 Jul 28;357(6349):409-413. https://doi.org/10.1126/science.aan6733. Epub 2017 Jun 8. PMID: 28596308; PMCID: PMC5576142.
- Wang HC, Yeh TJ, Chan LP, et al. Exploration of Feasible Immune Biomarkers for Immune Checkpoint Inhibitors in Head and Neck Squamous Cell Carcinoma Treatment in Real World Clinical Practice. Int J Mol Sci. 2020 Oct 15;21(20):7621. https://doi.org/10.3390/ iims21207621. PMID: 33076306: PMCID: PMC7589088.
- ⁴⁸ De Schutter H, Spaepen M, Mc Bride WH, et al. The clinical relevance of microsatellite alterations in head and neck squamous cell carcinoma: a critical review. Eur J Hum Genet. 2007 Jul;15(7):734-41. https://doi.org/10.1038/sj.ejhg.5201845. Epub 2007 May 2. PMID: 17473833.

- Tardy MP, Di Mauro I, Ebran N, et al. Microsatellite instability associated with durable complete response to PD-L1 inhibitor in head and neck squamous cell carcinoma. Oral Oncol. 2018 May;80:104-107. https://doi.org/10.1016/j.oraloncology.2018.04.001. Epub 2018 Apr 7. PMID: 29631799.
- D'Souza G, Dempsey A. The role of HPV in head and neck cancer and review of the HPV vaccine. Prev Med. 2011 Oct;53 Suppl 1(Suppl 1):S5-S11. https://doi.org/10.1016/j.ypmed.2011.08.001. PMID: 21962471: PMCID: PMC3287051.
- Starska-Kowarska K. The Role of Different Immunocompetent Cell Populations in the Pathogenesis of Head and Neck Cancer-Regulatory Mechanisms of Pro- and Anti-Cancer Activity and Their Impact on Immunotherapy. Cancers (Basel). 2023 Mar 7;15(6):1642. https://doi.org/10.3390/cancers15061642. PMID: 36980527; PM-CID: PMC10046400.
- Xu Y, Zhu G, Maroun CA, et al. Programmed Death-1/Programmed Death-Ligand 1-Axis Blockade in Recurrent or Metastatic Head and Neck Squamous Cell Carcinoma Stratified by Human Papillomavirus Status: A Systematic Review and Meta-Analysis. Front Immunol. 2021 Apr 7;12:645170. https://doi.org/10.3389/fimmu.2021.645170. PMID: 33897693; PMCID: PMC8058384.
- Wu C, Ke Y, Wan L, et al. Efficacy of immune checkpoint inhibitors differs in various status of carcinoma: a study based on 29 cohorts with 3255 participants. Cancer Immunol Immunother. 2024 Mar 30;73(5):79. https://doi.org/10.1007/s00262-024-03663-z. PMID: 38554165; PMCID: PMC10981616.
- Galon J, Mlecnik B, Bindea G, et al. Towards the introduction of the 'Immunoscore' in the classification of malignant tumours. J Pathol. 2014 Jan;232(2):199-209. https://doi.org/10.1002/path.4287. PMID: 24122236; PMCID: PMC4255306.
- Hendry S, Salgado R, Gevaert T, et al. Assessing Tumor-Infiltrating Lymphocytes in Solid Tumors: A Practical Review for Pathologists and Proposal for a Standardized Method from the International Immuno-Oncology Biomarkers Working Group: Part 2: TILs in Melanoma, Gastrointestinal Tract Carcinomas, Non-Small Cell Lung Carcinoma and Mesothelioma, Endometrial and Ovarian Carcinomas, Squamous Cell Carcinoma of the Head and Neck, Genitourinary Carcinomas, and Primary Brain Tumors. Adv Anat Pathol. 2017 Nov;24(6):311-335. https://doi.org/10.1097/PAP.000000000000000161. PMID: 28777143; PMCID: PMC5638696.
- Salgado R, Denkert C, Demaria Set al. International TILs Working Group 2014. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol. 2015 Feb;26(2):259-71. https://doi.org/10.1093/annonc/mdu450. Epub 2014 Sep 11. PMID: 25214542; PMCID: PMC6267863.
- Almangush A, De Keukeleire S, Rottey S, et al. Tumor-Infiltrating Lymphocytes in Head and Neck Cancer: Ready for Prime Time? Cancers (Basel). 2022 Mar 18;14(6):1558. https://doi.org/10.3390/cancers14061558. PMID: 35326709; PMCID: PMC8946626.
- Mandal R, Şenbabaoğlu Y, Desrichard A, et al. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016 Oct 20;1(17):e89829. https://doi.org/10.1172/jci. insight.89829. PMID: 27777979; PMCID: PMC5070962.
- Wood O, Woo J, Seumois G, et al. SPARC Consortium. Gene expression analysis of TIL rich HPV-driven head and neck tumors reveals a distinct B-cell signature when compared to HPV independent tumors. Oncotarget. 2016 Aug 30;7(35):56781-56797. https://doi.org/10.18632/oncotarget.10788. PMID: 27462861; PM-CID: PMC5302866.
- Balermpas P, Michel Y, Wagenblast J, et al. Tumour-infiltrating lymphocytes predict response to definitive chemoradiotherapy in head and neck cancer. Br J Cancer. 2014 Jan 21;110(2):501-9. https://doi.org/10.1038/bjc.2013.640. Epub 2013 Oct 15. Erratum

- in: Br J Cancer. 2014 Jan 21;110(2):547. PMID: 24129245; PMCID: PMC3899751.
- Wolf GT, Chepeha DB, Bellile E, et al. University of Michigan Head and Neck SPORE Program. Tumor infiltrating lymphocytes (TIL) and prognosis in oral cavity squamous carcinoma: a preliminary study. Oral Oncol. 2015 Jan;51(1):90-5. https://doi.org/10.1016/j. oraloncology.2014.09.006. Epub 2014 Oct 3. PMID: 25283344; PMCID: PMC4268429.
- De Meulenaere A, Vermassen T, Aspeslagh S, et al. TILs in Head and Neck Cancer: Ready for Clinical Implementation and Why (Not)? Head Neck Pathol. 2017 Sep;11(3):354-363. https:// doi.org/10.1007/s12105-016-0776-8. Epub 2016 Dec 28. PMID: 28032290; PMCID: PMC5550394.
- Li F, Li C, Cai X, Xie Z, Zhou L, Cheng B, Zhong R, Xiong S, Li J, Chen Z, Yu Z, He J, Liang W. The association between CD8+ tumor-infiltrating lymphocytes and the clinical outcome of cancer immunotherapy: A systematic review and meta-analysis. EClinicalMedicine. 2021 Sep 16;41:101134. https://doi.org/10.1016/j.eclinm.2021.101134. PMID: 34585125; PMCID: PMC8452798.
- Kuba K, Inoue H, Matsumura S, et al. A retrospective analysis of tumor infiltrating lymphocytes in head and neck squamous cell carcinoma patients treated with nivolumab. Sci Rep. 2022 Dec 29;12(1):22557. https://doi.org/10.1038/s41598-022-27237-0. Erratum in: Sci Rep. 2023 Jan 26;13(1):1472. https://doi.org/10.1038/s41598-023-28598-w. Erratum in: Sci Rep. 2023 May 25;13(1):8467. https://doi.org/10.1038/s41598-023-35683-7. PMID: 36581686; PMCID: PMC9800384.
- Masucci MT, Minopoli M, Carriero MV. Tumor Associated Neutrophils. Their Role in Tumorigenesis, Metastasis, Prognosis and Therapy. Front Oncol. 2019 Nov 15;9:1146. https://doi.org/10.3389/fonc.2019.01146. PMID: 31799175; PMCID: PMC6874146.
- Hou A, Hou K, Huang Q, et al. Targeting Myeloid-Derived Suppressor Cell, a Promising Strategy to Overcome Resistance to Immune Checkpoint Inhibitors. Front Immunol. 2020 May 15;11:783. https://doi.org/10.3389/fimmu.2020.00783. PMID: 32508809; PMCID: PMC7249937.
- Wang Y, Du J, Gao Z, et al. Evolving landscape of PD-L2: bring new light to checkpoint immunotherapy. Br J Cancer. 2023 Mar;128(7):1196-1207. https://doi.org/10.1038/s41416-022-02084-y. Epub 2022 Dec 15. PMID: 36522474; PMCID: PMC10050415.
- Meliante PG, Zoccali F, de Vincentiis M, et al. Diagnostic Predictors of Immunotherapy Response in Head and Neck Squamous Cell Carcinoma. Diagnostics (Basel). 2023 Feb 23;13(5):862. https://doi.org/10.3390/diagnostics13050862. PMID: 36900006; PMCID: PMC10001329.
- Botticelli A, Cirillo A, d'Amati G, et al. The role of CD73 in predicting the response to immunotherapy in head and neck cancer patients. Pathol Res Pract. 2024 Aug;260:155415. https://doi.org/10.1016/j. prp.2024.155415. Epub 2024 Jun 28. PMID: 38996615.
- Nhen A, Ye Y, Chen F, et al. Integrated multi-omics analysis identifies CD73 as a prognostic biomarker and immunotherapy response predictor in head and neck squamous cell carcinoma. Front Immunol. 2022 Nov 16;13:969034. https://doi.org/10.3389/fimmu.2022.969034. PMID: 36466881; PMCID: PMC9708745.
- Lin DJ, Ng JCK, Huang L, et al. The immunotherapeutic role of indoleamine 2,3-dioxygenase in head and neck squamous cell carcinoma: A systematic review. Clin Otolaryngol. 2021 Sep;46(5):919-934. https://doi.org/10.1111/coa.13794. Epub 2021 May 30. PMID: 34053179; PMCID: PMC8600953.
- Botticelli A, Cerbelli B, Lionetto L, et al. Can IDO activity predict primary resistance to anti-PD-1 treatment in NSCLC? J Transl Med. 2018 Aug 6;16(1):219. https://doi.org/10.1186/s12967-018-1595-3. PMID: 30081936: PMCID: PMC6080500.

- ⁷³ Sailer V, Sailer U, Bawden EG, et al. DNA methylation of indoleamine 2,3-dioxygenase 1 (IDO1) in head and neck squamous cell carcinomas correlates with IDO1 expression, HPV status, patients' survival, immune cell infiltrates, mutational load, and interferon γ signature. EBioMedicine. 2019 Oct;48:341-352. https:// doi.org/10.1016/j.ebiom.2019.09.038. Epub 2019 Oct 15. PMID: 31628024; PMCID: PMC6838413.
- Haddad RI, Seiwert TY, Chow LQM, et al. Influence of tumor mutational burden, inflammatory gene expression profile, and PD-L1 expression on response to pembrolizumab in head and neck squamous cell carcinoma. J Immunother Cancer. 2022 Feb;10(2):e003026. https://doi.org/10.1136/jitc-2021-003026. PMID: 35217573; PMCID: PMC8883256.
- Serafini MS, Cavalieri S, Licitra L, et al. Association of a gene-expression subtype to outcome and treatment response in patients with recurrent/metastatic head and neck squamous cell carcinoma treated with nivolumab. J Immunother Cancer. 2024 Jan 30;12(1):e007823. https://doi.org/10.1136/jitc-2023-007823. PMID: 38290766; PMCID: PMC10828850.
- Froelich MF, Schoenberg SO, Neumaier M, et al. Status of liquid profiling in precision oncology the need for integrative diagnostics for successful implementation into standard care. Journal of Laboratory Medicine, vol. 46, no. 4, 2022, pp. 237-245. https://doi.org/10.1515/labmed-2022-0026
- Haselmann V, Hedtke M, Neumaier M. Liquid Profiling for Cancer Patient Stratification in Precision Medicine-Current Status and Challenges for Successful Implementation in Standard Care. Diagnostics (Basel). 2022 Mar 19;12(3):748. https://doi.org/10.3390/diagnostics12030748. PMID: 35328301; PMCID: PMC8947441.
- ⁷⁸ Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. *Cells*. 2023; 12(14):1916. https://doi.org/10.3390/cells12141916
- Tamari K, Minami K, Tatekawa S, et al. Circulating Plasma Exosomal PD-L1 Predicts Prognosis of Head and Neck Squamous Cell Carcinoma After Radiation Therapy. Adv Radiat Oncol. 2023

- Aug 15;9(2):101353. https://doi.org/10.1016/j.adro.2023.101353. PMID: 38405303: PMCID: PMC10885579.
- ⁸¹ Cirillo A, Zizzari IG, Botticelli A, et al. Int J Mol Sci. 2023 Apr 12;24(8):7114. https://doi.org/10.3390/ijms24087114.
- Desrichard A, Kuo F, Chowell D, et al. Tobacco Smoking-Associated Alterations in the Immune Microenvironment of Squamous Cell Carcinomas. J Natl Cancer Inst. 2018 Dec 1;110(12):1386-1392. https://doi.org/10.1093/jnci/djy060. PMID: 29659925; PMCID: PMC6292793.
- Burcher KM, Burcher JT, Inscore L, et al. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers (Basel). 2022 Aug 25;14(17):4116. https://doi.org/10.3390/cancers14174116. PMID: 36077651; PMCID: PMC9454796.
- Peng Z, Cheng S, Kou Y, et al. The Gut Microbiome Is Associated with Clinical Response to Anti-PD-1/PD-L1 Immuno-therapy in Gastrointestinal Cancer. Cancer Immunol Res. 2020 Oct;8(10):1251-1261. https://doi.org/10.1158/2326-6066.CIR-19-1014. Epub 2020 Aug 27. PMID: 32855157.
- Xue X, Li R, Chen Z, et al. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol. 2023 Aug 24;14:1235827. https://doi.org/10.3389/fimmu.2023.1235827. PMID: 37691931; PMCID: PMC10484231.
- Routy B, Le Chatelier E, Derosa L, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018 Jan 5;359(6371):91-97. https://doi.org/10.1126/science.aan3706. Epub 2017 Nov 2. PMID: 29097494.
- Ferris RL, Blumenschein G, Harrington K, et al. Abstract CT022: Evaluation of oral microbiome profiling as a response biomarker in squamous cell carcinoma of the head and neck: Analyses from CheckMate 141. Cancer Res 1 July 2017; 77 (13_Supplement): CT022. https://doi.org/10.1158/1538-7445.AM2017-CT022
- Vellanki PJ, et al., Evaluation of the correlation between antibiotic use and survival in patients with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) treated with immune checkpoint inhibitors (ICIs).. JCO 38, 6509-6509(2020). https://doi.org/10.1200/JCO.2020.38.15_suppl.6509