download
PDF
|
A preliminary study on the diagnostic performance of the uPath PD-L1 (SP263) artificial intelligence (AI) algorithm in patients with NSCLC treated with PD-1/PD-L1 checkpoint blockade
Abstract
Objective. The uPath PD-L1 (SP263) is an AI-based platform designed to aid pathologists in identifying and quantifying PD-L1 positive tumor cells in non-small cell lung cancer (NSCLC) samples stained with the SP263 assay.
Methods. In this preliminary study, we explored the diagnostic performance of the uPath PD-L1 algorithm in defining PD-L1 tumor proportion score (TPS) and predict clinical outcomes in a series of patients with advanced stage NSCLC treated with single agent PD-1/PD-L1 checkpoint blockade previously assessed with the SP263 assay in clinical practice.
Results. 44 patients treated from August 2015 to January 2019 were included, with baseline PD-L1 TPS of ≥ 50%, 1-49% and < 1% in 38.6%, 25.0% and 36.4%, respectively. The median uPath PD-L1 score was 6 with a significant correlation with the baseline PD-L1 TPS (r: 0.83, p < 0.01). However, only 27 cases (61.4%) were scored within the same clinically relevant range of expression (≥ vs < 50%). In the study population the baseline PD-L1 TPS was not significantly associated with clinical outcomes, while the uPath PD-L1 score showed a good diagnostic ability for the risk of death at the ROC curve analysis [AUC: 0.81 (95%CI: 0.66-0.91), optimal cut-off of ≥ 3.2], resulting in 19 patients (43.2%) being u-Path low and 25 patients (56.8%) being uPath high. The objective response rate in uPath high and low was 51.6% and 25.0% (p = 0.1), respectively, although the uPath was significantly associated with overall survival (OS, HR 2.45, 95%CI: 1.19-5.05) and progression free survival (PFS, HR 3.04, 95%CI: 1.51-6.14). At the inverse probability of treatment weighting analysis used to balance baseline covariates, the uPath categories confirmed to be independently associated with OS and PFS.
Conclusions. This preliminary analysis suggests that AI-based, digital pathology tools such as uPath PD-L1 (SP263) can be used to optimize already available biomarkers for immune-oncology treatment in patients with NSCLC.
Affiliations
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Copyright
© Società Italiana di Anatomia Patologica e Citopatologia Diagnostica, Divisione Italiana della International Academy of Pathology , 2024
How to Cite
- Abstract viewed - 103 times
- PDF downloaded - 21 times